Type-PT® Alternative Pan Phillips
 THREAD FORMING SCREWS

Screw Size	P			d					M			Drive Size
	Thread Dimensions				Head Dimensions				Recess Dimensions			
	Thread Pitch	External Thread Diam.		$\begin{array}{c}\text { Thread } \\ \text { Core }\end{array}$ Ref	Diameter		Height		Diameter	Gauge Penetration		
		Max	Min		Max	Min	Max	Min	Max	Max	Min	
M1.6	0.67	1.74	1.60	0.92	2.60	2.32	1.10	0.90	1.60	0.85	0.55	0
M2.2	0.98	2.34	2.20	1.25	3.90	3.62	1.60	1.40	2.40	1.21	0.85	1
M2.5	1.12	2.64	2.50	1.40	4.40	4.12	1.80	1.60	2.60	1.42	1.05	1
M3	1.34	3.14	3.00	1.66	5.30	5.02	2.10	1.90	2.90	1.65	1.24	1
M3.5	1.57	3.68	3.50	1.91	6.10	5.82	2.60	2.40	4.0	1.86	1.23	2
M4	1.79	4.18	4.00	2.17	7.00	6.72	2.80	2.60	4.30	2.14	1.51	2
M5	2.24	5.00	4.82	2.68	8.80	8.52	3.32	3.08	4.9	2.75	2.12	2
Tolerance on Length				$3 \sim 6 \mathrm{~mm}: \pm 0.30 \mathrm{~mm}$				$7 \sim 10 \mathrm{~mm}: \pm 0.40 \mathrm{~mm}$				
				$11 \sim 30 \mathrm{~mm}: \pm 0.50 \mathrm{~mm}$				$31 \sim 80 \mathrm{~mm}: \pm 0.65 \mathrm{~mm}$				

Description	A spaced thread fastener with a head that has a gently rounded top, cylindrical sides and a flat bearing surface that is 90° to the screw's shank. When compared to a Plastite®-alternative thread rolling screw, the PT®-alternative threads are wider and have a sharper angle. Furthermore, the core of the shank has a reduced diameter between each consecutive set of threads. The point opposite the head lis blunt.	
Applications/ Advantages	Designed to form its own thread in thermoplastic materials. The 30° thread angle reduces the outward expansion of the material being displaced. The recessed design of the thread root enables more material to flow into the area between threads. The depth of the thread pattern increases the fastener's load carrying properties while resisting vibrations, thus resisting loosening.	
Material	Steel	Stainless
Core Hardness	Diameters M3 \& smaller: Case-Hardened C1022 Steel Diameters M3.5 and larger: Through-hardened C1022 Steel	A2 Stainless
Surface Hardness	HV $270-390$	HV 450 min.

